The Elusive Perfect Problem

Outline

Introduction

The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoida Numbers

Example: Codes and Communication

"Do No Harm" activities in an enrichment program for "unenriched" students

Paul Zeitz

University of San Francisco San Francisco Math Circle

Jun. 3, 2011

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoida Numbers

Example: Codes and Communication 1 Introduction

2 The San Francisco Math Circle

3 Good and Bad Problems

4 Example: Trapezoidal Numbers

5 Example: Codes and Communication

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bac Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Started Fall 2005

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Started Fall 2005

 Matthias Beck (SFSU), Brandy Wiegers (MSRI), PZ (USF)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Started Fall 2005

 Matthias Beck (SFSU), Brandy Wiegers (MSRI), PZ (USF)
 MSRI

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Started Fall 2005

 Matthias Beck (SFSU), Brandy Wiegers (MSRI), PZ (USF)

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

MSRI

Generous Donors

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoida Numbers

Example: Codes and Communication

Started Fall 2005

- Matthias Beck (SFSU), Brandy Wiegers (MSRI), PZ (USF)
- MSRI
- Generous Donors
- Instructors, Teachers, Students, Parents

What Type of Circle?

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoida Numbers

Example: Codes and Communication Students: Unenriched —— Already enriched Diversity: High —— Low Recruitment: Teacher — Self — Parents Time: After-school — Evening/Weekend Length: Short —— Long Level: Math doesn't suck! —— Olympiad Instruction: Small groups —— Pure Lecture

What Type of Circle?

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoida Numbers

Example: Codes and Communication Students: Unenriched — Already enriched
Diversity: High — Low
Recruitment: Teacher — Self — Parents
Time: After-school — Evening/Weekend
Length: Short (50 min) — Long
Level: Math doesn't suck! — Olympiad

Instruction: Small groups —— Pure Lecture

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoida Numbers

The Elusive Perfect Problem

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoida Numbers

The Elusive Perfect Problem

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoida Numbers

The Elusive Perfect Problem Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoida Numbers

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Elusive Perfect Problem

0.....

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Anything that inhibits

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Anything that inhibits Confidence

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Anything that inhibits

Confidence

Conversation/Argument

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Anything that inhibits

- Confidence
- Conversation/Argument
- Quick mathematical feedback

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoida Numbers

Example: Codes and Communication

Anything that inhibits

- Confidence
- Conversation/Argument
- Quick mathematical feedback
- Physical, tangible interaction with the world

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoida Numbers

Example: Codes and Communication

Anything that inhibits

- Confidence
- Conversation/Argument
- Quick mathematical feedback
- Physical, tangible interaction with the worldINVESTIGATION

	Examples of Bad Problems	
The Elusive Perfect Problem		
Paul Zeitz		
Outline		
Introduction		
The San Francisco Math Circle		
Good and Bad Problems		
Example: Trapezoidal Numbers		
Example: Codes and Communica- tion		
	(日) (문) (문) (문) 문 ()	.0

The Elusive Perfect Problem

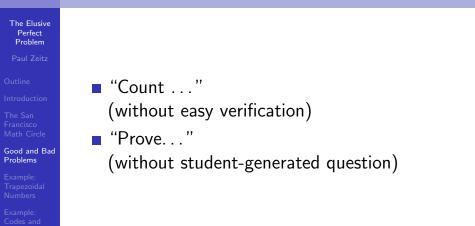
Paul Zeitz

Outline

Introduction

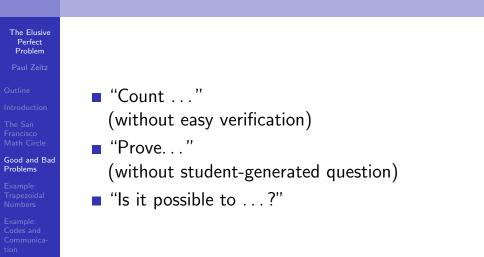
The San Francisco Math Circle

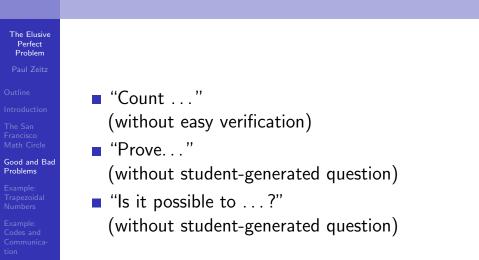
Good and Bad Problems


Example: Trapezoidal Numbers

Example: Codes and Communication ■ "Count . . . "

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?


Examples of Bad Problems The Elusive Perfect Problem "Count ..." (without easy verification) Good and Bad Problems


Examples of Bad Problems The Elusive Perfect Problem "Count" (without easy verification) "Prove..." Good and Bad Problems

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Comm tion

	Two Styles for Good Problems	
The Elusive Perfect Problem		
Paul Zeitz		
Outline		
Introduction		
The San Francisco Math Circle		
Good and Bad Problems		
Example: Trapezoidal Numbers		
Example: Codes and Communica- tion		
	< ロ > < (型 > < 注 > < 注 > の)()	Ş

Two Styles for Good Problems The Elusive Perfect Problem Hard, but with "scaffolding" Good and Bad Problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

■ Hard, but with "scaffolding"

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Warm-up problems

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

■ Hard, but with "scaffolding"

- Warm-up problems
- Hint rationing

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

■ Hard, but with "scaffolding"

- Warm-up problems
- Hint rationing
- Trained helpers

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoida Numbers

Example: Codes and Communication

Hard, but with "scaffolding"

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

- Warm-up problems
- Hint rationing
- Trained helpers

Easier, stand-alone

Example:	Trapezoidal	Numbers
----------	-------------	---------

The Elusive Perfect
Problem
Faul Zeitz
Math Circle
Example:
Trapezoidal
Numbers

Example: Trapezoidal Numbers

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication A number is *trapezoidal* if it can be expressed as a sum of consecutive positive integers.

Example: Trapezoidal Numbers

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication A number is *trapezoidal* if it can be expressed as a sum of consecutive positive integers.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Find all trapezoidal numbers.

Example: Trapezoidal Numbers

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication A number is *trapezoidal* if it can be expressed as a sum of consecutive positive integers.

- Find all trapezoidal numbers.
- Answer: all positive integers, except 1, 2, 4, 8, 16,

Example: Trapezoidal Numbers

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication A number is *trapezoidal* if it can be expressed as a sum of consecutive positive integers.

- Find all trapezoidal numbers.
- Answer: all positive integers, except 1, 2, 4, 8, 16,
- Bad: Algebra (my plan)

Example: Trapezoidal Numbers

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

- A number is *trapezoidal* if it can be expressed as a sum of consecutive positive integers.
- Find all trapezoidal numbers.
- Answer: all positive integers, except 1, 2, 4, 8, 16,
- Bad: Algebra (my plan)
- Good: What the students invented (dots)

Alge	braic	Argumer	۱t
------	-------	---------	----

The Elusive
Perfect
Problem
Paul Zeitz
Faul Zeitz
Example:
Trapezoidal
Numbers

The Elusive Perfect Problem

Outline

Introduction

The San Francisco Math Circle

Good and Bac Problems

Example: Trapezoidal Numbers

Example: Codes and Communication $T = \frac{(a+\ell)}{2}n$

The Elusive Perfect Problem

Outline

Introduction

The San Francisco Math Circl

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

$$T = \frac{(a+\ell)}{2}n$$
$$T = \frac{(2a+n-1)}{2}n$$

Outline

Introduction

The San Francisco Math Circl

Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication $T = \frac{(a+\ell)}{2}n$ $T = \frac{(2a+n-1)}{2}n$ $T = \frac{odd \cdot even}{2}$

・ロト ・ 雪 ト ・ ヨ ト

э

Outline

Introduction

The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication • $T = \frac{(a + \ell)}{2}n$ • $T = \frac{(2a + n - 1)}{2}n$ • $T = \frac{odd \cdot even}{2}$ • The smaller of these two factors equals *n*; the larger equals $a + \ell$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Algebraic I	Examples
-------------	----------

The Elusive
Perfect
Problem
E
Example: Trapezoidal
Numbers
Tumbers

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bac Problems

Example: Trapezoidal Numbers

Example: Codes and Communication ■ *T* = 36

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication **T** = 36 $2T = 72 = 8 \cdot 9$

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication ■ *T* = 36

2T = 72 = 8 ⋅ 9
n = 8, a + ℓ = 9

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication ■ *T* = 36

 $\bullet 2T = 72 = 8 \cdot 9$

■ *n* = 8, *a* + *l* = 9

• T = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8.

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication ■ *T* = 36

- $2T = 72 = 8 \cdot 9$
- *n* = 8, *a* + *l* = 9
- T = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8.

■ *T* = 22

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication ■ *T* = 36

■ $2T = 72 = 8 \cdot 9$ ■ $n = 8, a + \ell = 9$

• T = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

2 $T = 44 = 4 \cdot 11$

The Elusive Perfect Problem

Example: Trapezoidal Numbers

■ *T* = 36

■
$$2T = 72 = 8 \cdot 9$$

■ $n = 8, a + \ell = 9$

•
$$T = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8$$

•
$$2T = 44 = 4 \cdot 11$$

• $n = 4, a + \ell = 11$

■
$$n = 4, a + \ell = 1$$

The Elusive Perfect Problem

T dui Zen

Outline

Introduction

The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication ■ *T* = 36

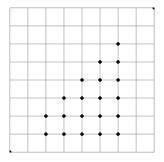
■ $2T = 72 = 8 \cdot 9$ ■ $n = 8, a + \ell = 9$

T = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8.

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

■ *T* = 22

■ $2T = 44 = 4 \cdot 11$


 $\bullet \quad n=4, a+\ell=11$

• T = 4 + 5 + 6 + 7.

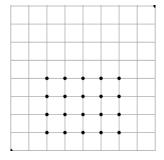
Dots to the Rescue! 2 + 3 + 4 + 5 + 6 = ?

Example: Codes and Communication

$2 + 3 + 4 + 5 + 6 = 5 \cdot 4$

Paul Zeitz

Outline


Introduction

The San Francisco Math Circle

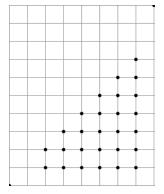
Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Paul Zeitz

Outline


Introduction

The San Francisco Math Circle

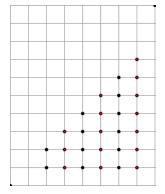
Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Paul Zeitz

Outline


Introduction

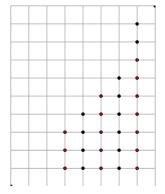
The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Outline


Introduction

The San Francisco Math Circle

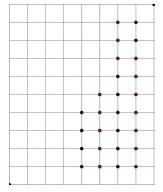
Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Paul Zeitz

Outline


Introduction

The San Francisco Math Circle

Good and Ba Problems

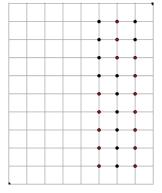
Example: Trapezoidal Numbers

Example: Codes and Communication

$2 + 3 + 4 + 5 + 6 + 7 = 3 \cdot 9$

Paul Zeitz

Outline


Introduction

The San Francisco Math Circle

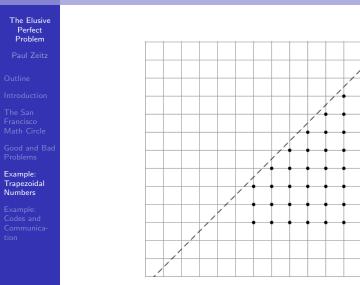
Good and Ba Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

	13 × 4 =	?								
The Elusive Perfect Problem			1	1	1		1	I		
Paul Zeitz				_						
Outline										
Introduction										
The San Francisco Math Circle										
Good and Bad Problems										
Example: Trapezoidal Numbers			ł	-						
Example: Codes and										
Communica- tion			Ĺ							

	$13 \times 4 = 1$?									
The Elusive Perfect Problem											
Paul Zeitz											
Outline											
Introduction											
The San Francisco Math Circle											
Good and Bad Problems											
Example: Trapezoidal											
Numbers			_				 _	ļ,			
Example: Codes and Communica-		-	•	• •	-	-	 	 	 -	-	-
tion											


	13 × 4 =	?								
The Elusive Perfect Problem										
Paul Zeitz										
Outline	-									
Introduction										
The San Francisco Math Circle										
Good and Bad Problems						 	•		 	
Example: Trapezoidal Numbers										
Example:		_	┝		 	 		ļ	 	
Codes and Communica- tion			• •	_	 	 -	-		 	
tion										

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

	13 × 4 =?
The Elusive Perfect Problem Paul Zeitz Outline Introduction The San Francisco Math Circle Good and Bad Problems Example: Trapezoidal Numbers Example: Codes and Communica- tion	

	13 × 4 =?
The Elusive Perfect Problem Paul Zeitz Outline Introduction The San Francisco Math Circle Good and Bad Problems Example: Trapezoidal Numbers Example: Codes and Communica- tion	

$13 \times 4 = 3 + 4 + \dots + 9 + 10$

The Elusive
Perfect
Problem
FIODIeIII
Paul Zeitz
Example:
Codes and
Communica-
tion

The Elusive Perfect Problem

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Warmup problem I: "Do you know what I know?" (Zvonkin)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The Elusive Perfect Problem

Outline

Introduction

The San Francisco Math Circle

Good and Bac Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Warmup problem I: "Do you know what I know?" (Zvonkin)

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

■ Opaque cards are labeled 1/2, 2/3, or 3/4.

The Elusive Perfect Problem

Paul Zeit:

Outline

Introduction

The San Francisco Math Circle

Good and Bac Problems

Example: Trapezoidal Numbers

Example: Codes and Communication Warmup problem I: "Do you know what I know?" (Zvonkin)

- Opaque cards are labeled 1/2, 2/3, or 3/4.
- Two opposing players sit opposite one another

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bac Problems

Example: Trapezoidal Numbers

Example: Codes and Communication Warmup problem I: "Do you know what I know?" (Zvonkin)

- Opaque cards are labeled 1/2, 2/3, or 3/4.
- Two opposing players sit opposite one another
- Moderator holds up a card so that each player sees one side.

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bac Problems

Example: Trapezoidal Numbers

Example: Codes and Communication Warmup problem I: "Do you know what I know?" (Zvonkin)

- Opaque cards are labeled 1/2, 2/3, or 3/4.
- Two opposing players sit opposite one another
- Moderator holds up a card so that each player sees one side.
- First player to say which number her opponent sees wins.

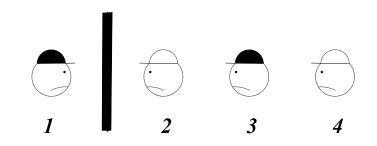
The Elusive
Perfect
Problem
FIODIeIII
Paul Zeitz
Example:
Codes and
Communica-
tion

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction


The San Francisco Math Circle

Good and Ba Problems

Example: Trapezoida Numbers

Example: Codes and Communication

■ Warmup problem II : Heads in the Sand

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ● のへ⊙

	First	"hard"	problem		
The Elusive Perfect Problem					
Example: Codes and Communica- tion					

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

	First "hard" problem
The Elusive Perfect Problem Paul Zeitz	Ten people are lined up, all facing forward.
Outline	
Introduction	
The San Francisco Math Circle	
Good and Bad Problems	
Example: Trapezoidal Numbers	
Example: Codes and Communica- tion	

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication Ten people are lined up, all facing forward.
Hats are placed on them (black or white, no pattern).

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication Ten people are lined up, all facing forward.

- Hats are placed on them (black or white, no pattern).
- A person can ONLY see the hat colors of the people in front of him or her.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bac Problems

Example: Trapezoida Numbers

Example: Codes and Communication

- Ten people are lined up, all facing forward.
- Hats are placed on them (black or white, no pattern).
- A person can ONLY see the hat colors of the people in front of him or her.
- Starting from the rear, each person will say what color their hat is. The moderator will tell them if they are right or wrong. They are ONLY allowed to say "black" or "white."

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication Assume that they can meet for a strategy meeting before the hats are put on. How can they maximize the number of correct answers?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

	First	''hard''	problem		
The Elusive Perfect Problem					
Example: Codes and Communica- tion					

◆□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶

	First "hard" problem
The Elusive Perfect Problem Paul Zeitz	
Outline	
Introduction	
The San Francisco Math Circle	Crux idea is parity. How to hint this?
Good and Bad Problems	
Example: Trapezoidal Numbers	
Example: Codes and Communica-	

First "hard" problem The Elusive Perfect Problem Crux idea is parity. How to hint this? With **MORE PROBLEMS!** Example: Codes and

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Communica-

The Elusive Perfect Problem

Paul Zeitz

Outline

Introduction

The San Francisco Math Circle

Good and Bad Problems

Example: Trapezoidal Numbers

Example: Codes and Communication

Crux idea is parity. How to hint this? With MORE PROBLEMS!

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Trained student helpers/performers