
KenKen as a Mathematical Object

KenKen as a Mathematical Object

HAROLD B. REITER
UNIVERSITY OF NORTH CAROLINA

CHARLOTTE

R L Moore Conference, Washington DC, June 2, 2011

KenKen r© is a puzzle whose solution requires a combination of logical, simple
arithmetic and combinatorial skills. The puzzles range in difficulty from very simple
to incredibly difficult. Students who get hooked on the puzzle will find themselves
practicing addition, subtraction, multiplication and division facts. This paper is
intended for mathematicians who want to use KenKen puzzles to nurture those
skills in students. It is also an attempt to build a mathematical framework that
enables the generalization of KenKen to puzzles for which the arithmetic is different
from our usual one.

Websites of interest:

1. http://www.math.uncc.edu/~hbreiter/KenKen

2. http://www.geometer.org/mathcircles/kenken.pdf

3. http://www.kenken.com/

4. http://www.nytimes.com/ref/crosswords/kenken.html

5. http://www.stanford.edu/~tsnyder/kenken.htm

6. http://en.wikipedia.org/wiki/KenKen
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1 A Sample Puzzle

Look at the two 4× 4 puzzles below. Solve the first one and then find clues for the
second one so that a distribution of the alphabet {2, 4, 6, 8} uniquely solve the puzzle.
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Solution:
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2 What is KenKen?

Let A be an alphabet of n symbols, and let ⊗ and ⊕ be associative, commutative
binary operators on A. A KenKen puzzle is a four-tuple K = (A,C,⊗,⊕), where
C = {C1, C2, . . . , Ck} is a partition of an n× n checkerboard into polygonal regions
(sometimes called polyominoes) each of which is the union of unit squares (also
called cells), and each of which comes with a clue ci of the following type. In case
Ci consists of three or more squares, the clue ci is one of

• φ, the empty clue,

• x⊗, where x ∈ A, or

• x⊕, where x ∈ A.

A multisubset x1, x2, . . . , xt of A satisfies a t-cell cage clue x⊕ provided x1 ⊕ x2 ⊕
. . .⊕xt = x. A multisubset x1, x2, . . . , xt of A satisfies a t-cell cage clue x⊗ provided
x1 ⊗ x2 ⊗ . . .⊗ xt = x. Every multisubset satisfies the empty clue.

In case Ci consists of exactly two squares, the clue ci can be any of the three
above or either of the two below.

• xª, where x ∈ A, or

• x®, where x ∈ A.

In case Ci is a single square, ci is either the empty clue of a member of A.
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A pair u, v of elements of A satisfies a clue xª if either u⊕ x = v or v ⊕ x = u.
A pair u, v of elements of A satisfies a clue x® if either u⊗ x = v or v ⊗ x = u. In
case Ci is a single square with clue x, only x itself satisfies the clue. If the clue is
empty, all the elements of A satisfy the clue.

A solution to a KenKen puzzle is an n×n matrix of elements of A such that no
two members of A appear in any row or column and such that each clue is satisfied.
A KenKen puzzle is called standard if there is exactly one such matrix. Standard
KenKen (see http://www.kenken.com/) in an n × n puzzle with the alphabet
1, 2, 3, . . . , n, no empty cages, and the usual operators +,×,−, and ÷.

Some puzzle creators (see http://www.stanford.edu/~tsnyder/kenken.htm,
for example) use an ordered alphabet, and define cages of more than 2 cells with
clues ª, and ® as follows. The value of a multiset is the largest of the cage ª or
® combined with the result of applying ⊕ or otimes to the rest of the members
of the multiset. For example ª applied to the multiset {1, 2, 6} gives the result
6− (12) = 3.

3 An Example

In the example below, A = {1, 2, 3, 4, 5} and C consists of exactly two cages. The
operations ⊕ and ⊗ are just the usual + and ×.

86400× 38+
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Solution: The easy way to approach this is to note that in the cage [86400×]
there must be exactly two 5’s and exactly three 3’s. Thus the [38+] cage must have
three 5’s and two 3’s among its 10 digits. Therefore, the sum of the other five digits
is 38 − 21 = 17, and the only way to achieve this is four 4’s and a 1. Now it turns
out that there is just one way to put four 4’s, three 5’s, two 3’s, and one 1 in the
cage, and once this is done, the other cage can be filled in only one way.
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4 Example 2

3⊕ 0⊗ 2⊗

1⊕

3⊕ 2⊗

1ª 0

Addition ⊕ and multiplication ⊗ on A = {0, 1, 2, 3}

⊕ 0 1 2 3

0 0 1 2 3
1 1 2 3 0
2 2 3 0 1
3 3 0 1 2

¯ 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 2 0 2
3 0 3 2 1

The complete solution is given below.

3⊕ 0⊗ 2⊗

1⊕

3⊕ 2⊗

1ª 0

3

0

1

2

2

3

0

1

1

2
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0

0

1

2

3
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To fully understand what a KenKen puzzle is, we need some more terminology.
If C is a t-cell cage with clue c, a candidate set for c is a t-element multiset Tc

that satisfies the clue c. Of course, most cages have more than one candidate set.
For example, in a 6 × 6 standard KenKen, a two-cell cage with clue 7+ has three
candidate sets {1, 6}, {2, 5}, and {3, 4}. Note that the shape of the cage can influence
the candidate set. For example, in a 6 × 6 standard KenKen, the 3-cell L-shaped
cage with clue 6+ is {1, 1, 4}, {1, 2, 3}, but the straight 3-cell cage with the same
clue has only one candidate set, {1, 2, 3}.

5 Isomorphism

In this section we explore the notion of isomorphism. Suppose we have two n × n
KenKen puzzles K1 = (A1,C1,⊗1,⊕1) and K2 = (A2,C2,⊗2,⊕2). We call K1 and
K2 isomorphic, and write K1

∼= K2 if there are two bijective functions f : A1 → A2

and g : C1 → C2 satisfying the following condition: for each cage C1 ∈ C1, the
multiset TC1 is a candidate set for C1 if and only if f(TC1) is a candidate set for
g(C1). Below is an example of two isomorphic puzzles. The 4 × 4 puzzle K1 on
the left has alphabet {1, 2, 3, 4} while K2 on the right has alphabet {2, 4, 6, 8}. The
function f : A1 → A2 is given by f(n) = 2n. Its pretty clear how the function g is
defined.

3−

2÷

6×

1−

3−

1−

3−

4+

6−

2÷

24×

2−

6−

2−

6−

8+

Theorem 1 ∼= is an equivalence relation on the family of all n × n KenKen
puzzles. That is, ∼= is reflexive (K ∼= K, ∀K), symmetric (K ∼= L =⇒ L ∼= K), and
transitive (K ∼= L ∧ L ∼= M =⇒ K ∼= M). The proof is left to the reader.
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6 Measuring Difficulty

What makes a good puzzle? Most puzzlers believe that a great puzzle must not
require slogging and must reward insight. A great puzzle must not give up after
the first insight. It must keep fighting back. Of course, these are not mathematical
ideas, and so they are hard to quantify. Yet there is a way to say one puzzle is
harder than another. Suppose in a 6 × 6 standard puzzle, a [15×] cage is replaced
by a [8+] cage and that the later still has a unique solution. Then clearly the later
is harder than the former. We can use the terminology developed in the previous
section to formalize this idea.

Suppose we have two n × n KenKen puzzles K1 = (A1,C1,⊗1,⊕1) and K2 =
(A2,C2,⊗2,⊕2). Suppose there are a bijective functions f : A1 → A2 and g : C1 →
C2 satisfying the following condition: for each cage C1 ∈ C1, if multiset TC1 is a
candidate set for C1 then f(TC1) is a candidate set for g(C1). In this case we say
K1 is easier than K2 or K2 is harder than K1 and write K1 ≺ K2.

Now its not very hard to prove
Theorem 2 ≺ is a partial ordering of the family of all n×n KenKen puzzles. That
is, prec is reflexive (K ≺ K, ∀K), antisymmetric (K ≺ L∧L ≺ K =⇒ K ∼= L, and
transitive (K ≺ L ∧ L ≺ M =⇒ K ≺ M). The proof is left to the reader.

We give an example below. Of course, removing a clue from a cage is one way to
make a puzzle harder. The problem is that if we push the puzzle to become harder,
we may get a puzzle with multiple solutions.
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7 Prime KenKen

In the regular puzzle KenKen, the numbers in each heavily outlined set of squares,
called cages, must combine (in any order) to produce the target number in the top
corner of the cage using the mathematical operation indicated. A number can be
repeated within a cage as long as it is not in the same row or column. In this
6× 6 puzzle, the six numbers are known only to be prime numbers. In contrast to
most KenKen puzzles, here you must figure out which operations produce the target
numbers. Of course any cage with more than two cells must be multiplication or
addition.

39 30 53

15 30 77

14

60 25 2

29 10 21

3
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Solution: First, let’s label all the clues that we can with the operation. Let’s
also name the rows and columns so that we can quickly identify each location. Thus,

a

b

c

d

e

f

1 2 3 4 5 6

39+ 30 53+

15 30 77+

14

60+ 25+ 2−

29+ 10 21+

3
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Solution: As before, let T = {x, y, z, u, v, w} be the set of 6 primes, and σ their
sum. Now 2 ∈ T because the cage [60+] must have a 2. Next note that neither of
the cages [25+] and [77+] can have a 2 because they are 3-cell cages with an odd
sum. Therefore the 2 of column 4 goes in a4. Next note that the sum of the entries
in the columns 4, 5 and 6 is 3σ, a multiple of 3. Thus 53+77+25+21+3+

∑
[30]+∑

[2−] = 179 +
∑

[30] +
∑

[2−] is a multiple of 3. Let’s rule out {[2−]} = {3, 5}.
If {[2−]} = {3, 5}, then

∑
[2−] = 8. Since [30] = [30+] or [30×], it follows that∑

[30] = 2+3+5 = 10 or 30. But neither 179+10+8 or 179+30+8 are multiples of
3. Now all the other possibilities for the [2−] cage have the property that

∑
[2−] is a

multiple of 3. Why? This implies that [30] = [30×] since 179+10 = 189 is a multiple
of 3 while 179 + 30 = 209 is not. Thus {a5, b5} = {3, 5}. What does this imply
about the cage [15] at b2? The answer is that [15] cannot be [15×] because either a
3 or a 5 must occupy b5. Now this means that either {[15]} = {[15+]} = {13, 2} or
{[15]} = {[15−]} = {17, 2}. Let’s summarize what we know in the grid below.

a

b

c

d

e

f

1 2 3 4 5 6
39+ 30 53+

15 30

2
3, 5

3, 52 2

77+

14

60+ 25+ 2−

29+ 10 21+

3
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Now, where’s the 2 in column 6? Its not in the [53+] cage, and its not in the
[2−] cage, so it must be at e6. This requires yet another 2 in the cage [21+]. So we
have

a

b

c

d

e

f

1 2 3 4 5 6

39+ 30 53+

15 30

2

2

2

17

3, 5

3, 52 2

77+

14

60+ 25+ 2−

29+ 10 21+

3
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Now let’s find the 2 in the other [30] cage. It can’t be in row d because the 2
in the [60+] cage must be in row d. But there is also a 2 in row b in the [15] cage.
So we have a 2 at c3. This implies that the [14] cage cannot be [14×], hence must
be [14−] or [14+]. What we know now is that T = {2, 3, 5, 17, v, w}. We are almost
done. If the numbers u and u + 2 that occupy the [2−] cage are v and w, then we
can write 3σ = 189 + 2u + 2 = 3(2 + 3 + 5 + 17 + u + u + 2), and this results in a
value of u = 26, a contradiction. Therefore u = 5 or u = 17. The former results in
u + 2 = 7 and T = {2, 3, 5, 7, 17, w}, where w = 33, a contradiction. If u = 17, then
u + 2 = 19 and we have T = {2, 3, 5, 17, 19, 29} and σ = (189 + 36)÷ 3 = 75, which
is consistent. The complete solution is given below.

a

b

c

d

e

f

1 2 3 4 5 6

39+ 30 53+

15 30 77+

14

60+ 25+ 2−

29+ 10 21+

19 3 17 2 5 29

17 2 5 29 3 19

3 17 2 19 29 5

2 29 3 5 19 17

29 5 19 3 17 2

5 19 29 17 2 3
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